
MTH 4300: Algorithms, Computers and Programming II

Fall 2025

Section: STRA

Problem Set 3
Due Date: September 23, 2025

Iterators and Algorithms (20 points)
You’re analyzing a full trading day of minute-by-minute stock prices to calculate key statistics and identify trading sessions. This
question has two parts that build on each other.

Part 1: Basic Day Statistics

Function Signature:

std::vector<double> calculateDayStats(const std::vector<double>& minute_prices);

Formula for standard deviation:

𝜎 = √(1
𝑁) ⋅ ∑𝑁

𝑖=0 (prices𝑖 − 𝜇)2

Requirements:
1. Use iterators - No index-based access
2. Use STL algorithms - Must use at least 3 different algorithms from <algorithm>
3. Return format - Vector with exactly 4 values: [min_price, max_price, average_price, std_deviation]

Example:

// Trading day with 6 minute prices
std::vector<double> prices = {100.0, 102.0, 98.0, 105.0, 97.0, 103.0};
std::vector<double> result = calculateDayStats(prices);
// Expected result: [97.0, 105.0, 100.833, 2.99]
// Min: 97.0, Max: 105.0, Average: 100.833, StdDev: 2.99

Part 2: K-Session Analysis

Function Signature:

std::vector<double> analyzeKSessions(const std::vector<double>& minute_prices, int k);

Requirements: Split the trading day into k equal sessions and find which session had the highest volatility (standard
deviation).

1. Use iterators - No index-based access allowed
2. Use STL algorithms - Must use algorithms to process each session
3. Return format - Vector with k+1 values: [session1_stddev, session2_stddev, ..., sessionK_stddev,

highest_session_number]

Session Rules:
• Divide total minutes into k equal parts
• Return session number (1, 2, …, k) that has highest standard deviation
• If multiple sessions tie for highest volatility, return the first one

Examples:

// Example 1: k=3, 9 prices → 3 prices per session
std::vector<double> prices1 = {100.0, 102.0, 98.0, 105.0, 97.0, 103.0, 101.0, 99.0, 104.0};
// Session 1: [100.0, 102.0, 98.0] → std_dev ≈ 1.63
// Session 2: [105.0, 97.0, 103.0] → std_dev ≈ 3.27
// Session 3: [101.0, 99.0, 104.0] → std_dev ≈ 2.05
// Expected: [1.63, 3.27, 2.05, 2.0] (session 2 has highest volatility)

Recursion (20 points)

Question 1: Single Variable Recursion

Write a recursive function that calculates the digital root of a positive integer. The digital root is obtained by repeatedly
summing the digits until a single digit remains.

Function Signature:

int digitalRoot(int n);

Requirements:
1. Use recursion - No loops allowed
2. Base case - Single digit numbers (0-9) return themselves
3. Recursive case - Sum all digits, then recursively find digital root of the sum
4. Helper function - You may create a helper function to sum digits

Algorithm:
• If n < 10, return n (base case)
• Otherwise, sum all digits of n and recursively call digitalRoot on the sum

Example:

assert(digitalRoot(9) == 9); // Single digit
assert(digitalRoot(38) == 2); // 3+8=11, 1+1=2
assert(digitalRoot(1234) == 1); // 1+2+3+4=10, 1+0=1
assert(digitalRoot(9999) == 9); // 9+9+9+9=36, 3+6=9

Question 2: Multi-Variable Recursion

Write a recursive function that calculates the number of paths in a grid from top-left (0,0) to bottom-right (m,n) where you can
only move right or down.

Function Signature:

int countPaths(int m, int n);

Requirements:
1. Use recursion - No loops or dynamic programming allowed
2. Base cases - If m == 0 or n == 0, there’s exactly 1 path (straight line)
3. Recursive case - Total paths = paths from (m-1,n) + paths from (m,n-1)
4. Grid coordinates - m represents remaining moves right, n represents remaining moves down

Algorithm:
• To reach (m,n), you must come from either (m-1,n) or (m,n-1)
• Total paths = countPaths(m-1,n) + countPaths(m,n-1)
• Base case: countPaths(0,n) = countPaths(m,0) = 1

Example:

assert(countPaths(1, 1) == 2); // 2x2 grid: RD or DR
assert(countPaths(2, 2) == 6); // 3x3 grid: multiple paths
assert(countPaths(3, 2) == 10); // 4x3 grid
assert(countPaths(0, 5) == 1); // Straight line (edge case)

	MTH 4300: Algorithms, Computers and Programming II
	Fall 2025
	Section: STRA
	Problem Set 3
	Iterators and Algorithms (20 points)
	Part 1: Basic Day Statistics
	Part 2: K-Session Analysis

	Recursion (20 points)
	Question 1: Single Variable Recursion
	Question 2: Multi-Variable Recursion

