
MTH 4300: Algorithms, Computers and Programming II

Fall 2025

Section: STRA

Problem Set 1
Due Date: September 4, 2025

Question 1: Temperature and Distance Converter
Write a C++ program that performs unit conversions and calculations using the concepts from Lecture 2:

1. Input Collection:
• Ask for the user’s name (handle spaces properly using std::getline())
• Ask for a temperature in Fahrenheit (can be decimal)
• Ask for a distance in miles (can be decimal)
• Ask for number of hours traveled (integer)

2. Conversions and Calculations:
• Convert Fahrenheit to Celsius using: C = (F - 32) × 5/9
• Convert miles to kilometers using: km = miles × 1.60934
• Calculate average speed in miles per hour: speed = distance ÷ hours
• Convert that speed to kilometers per hour

3. Output Display:
• Show the user’s name
• Display temperature in both Fahrenheit and Celsius (2 decimal places)
• Display distance in both miles and kilometers (2 decimal places)
• Show average speed in both mph and km/h (2 decimal places)

Requirements:
• Use appropriate data types (std::string, double, int)
• Use std::getline() for name input
• Use static_cast<double>() when dividing integers to ensure proper decimal results
• Use compound assignment operators where appropriate (e.g., for intermediate calculations)
• Format all decimal outputs to 2 decimal places using std::fixed and std::setprecision()
• Include proper headers (#include <iostream>, #include <string>, #include <iomanip>)

Provide complete source code and sample output demonstrating all conversions and calculations.

Sample Output:

=== Temperature and Distance Converter ===

Enter your name: Sarah Johnson
Enter temperature in Fahrenheit: 75.5
Enter distance in miles: 120.75
Enter hours traveled: 3

=== Conversion Results ===
Name: Sarah Johnson
Temperature: 75.50°F = 24.17°C
Distance: 120.75 miles = 194.33 km
Average Speed: 40.25 mph = 64.78 km/h

Solution:

#include <iostream>
#include <string>
#include <iomanip>

int main() {
 std::string name;
 double fahrenheit, miles;
 int hours;

 std::cout << "=== Temperature and Distance Converter ===" << std::endl << std::endl;

 // Input collection
 std::cout << "Enter your name: ";
 std::getline(std::cin, name);

 std::cout << "Enter temperature in Fahrenheit: ";
 std::cin >> fahrenheit;

 std::cout << "Enter distance in miles: ";
 std::cin >> miles;

 std::cout << "Enter hours traveled: ";
 std::cin >> hours;

 // Conversions and calculations
 double celsius = (fahrenheit - 32) * 5.0 / 9.0;
 double kilometers = miles * 1.60934;
 double speed_mph = miles / static_cast<double>(hours);
 double speed_kmh = speed_mph * 1.60934;

 // Output display
 std::cout << std::endl << "=== Conversion Results ===" << std::endl;
 std::cout << "Name: " << name << std::endl;
 std::cout << std::fixed << std::setprecision(2);
 std::cout << "Temperature: " << fahrenheit << "°F = " << celsius << "°C" << std::endl;
 std::cout << "Distance: " << miles << " miles = " << kilometers << " km" << std::endl;
 std::cout << "Average Speed: " << speed_mph << " mph = " << speed_kmh << " km/h" << std::endl;

 return 0;
}

Question 2: Recipe Scaling Calculator
Write a C++ program that helps scale a recipe up or down based on the number of servings needed. Your program should
demonstrate arithmetic operations, type casting, and I/O operations:

1. Input Collection:
• Ask for the recipe name (handle spaces using std::getline())
• Ask for original number of servings the recipe makes (integer)
• Ask for desired number of servings (integer)
• Ask for three ingredient amounts from the original recipe:

‣ Flour in cups (can be decimal, like 2.5)
‣ Sugar in tablespoons (integer)
‣ Milk in fluid ounces (can be decimal)

2. Scaling Calculations:
• Calculate the scaling factor: desired servings ÷ original servings
• Scale each ingredient by multiplying by the scaling factor
• Convert scaled flour from cups to tablespoons (1 cup = 16 tablespoons)
• Convert scaled milk from fluid ounces to cups (1 cup = 8 fluid ounces)

3. Demonstration of Operators:
• Use compound assignment operators to adjust one ingredient amount (e.g., add 0.25 cups to flour using +=)
• Show increment operators by increasing the serving count: int new_servings = desired_servings++
• Calculate total dry ingredients: flour (in tbsp) + sugar (in tbsp)

4. Output Display:
• Show recipe name and scaling information
• Display original and scaled ingredient amounts
• Show converted measurements (flour in tbsp, milk in cups)
• Display the final serving count after increment operation

Requirements:
• Use appropriate data types (std::string, int, double)
• Use static_cast<double>() when dividing integers for the scaling factor
• Use compound assignment and increment operators as specified
• Format decimal outputs to 2 decimal places
• Include headers: #include <iostream>, #include <string>, #include <iomanip>

Provide complete source code and sample output showing the recipe scaling process.

Sample Output:

=== Recipe Scaling Calculator ===

Enter recipe name: Chocolate Chip Cookies
Enter original number of servings: 12
Enter desired number of servings: 18
Enter flour amount (cups): 2.5
Enter sugar amount (tablespoons): 8
Enter milk amount (fluid ounces): 6.0

=== Scaling Results ===
Recipe: Chocolate Chip Cookies
Scaling factor: 1.50

Original Ingredients:
- Flour: 2.50 cups
- Sugar: 8 tablespoons
- Milk: 6.00 fluid ounces

Scaled Ingredients:
- Flour: 3.75 cups (60.00 tablespoons)
- Sugar: 12.00 tablespoons
- Milk: 9.00 fluid ounces (1.12 cups)

After adjustments:
- Flour (adjusted): 4.00 cups
- Total dry ingredients: 72.00 tablespoons
- Final serving count: 19

Solution:

#include <iostream>
#include <string>
#include <iomanip>

int main() {
 std::string recipe_name;
 int original_servings, desired_servings;
 double flour_cups, milk_oz;
 int sugar_tbsp;

 std::cout << "=== Recipe Scaling Calculator ===" << std::endl << std::endl;

 // Input collection
 std::cout << "Enter recipe name: ";
 std::getline(std::cin, recipe_name);

 std::cout << "Enter original number of servings: ";
 std::cin >> original_servings;

 std::cout << "Enter desired number of servings: ";
 std::cin >> desired_servings;

 std::cout << "Enter flour amount (cups): ";
 std::cin >> flour_cups;

 std::cout << "Enter sugar amount (tablespoons): ";
 std::cin >> sugar_tbsp;

 std::cout << "Enter milk amount (fluid ounces): ";
 std::cin >> milk_oz;

 // Scaling calculations
 double scaling_factor = static_cast<double>(desired_servings) / static_cast<double>(original_servings);

 double scaled_flour = flour_cups * scaling_factor;
 double scaled_sugar = static_cast<double>(sugar_tbsp) * scaling_factor;
 double scaled_milk = milk_oz * scaling_factor;

 // Conversions
 double flour_tbsp = scaled_flour * 16.0;
 double milk_cups = scaled_milk / 8.0;

 // Demonstration of operators
 scaled_flour += 0.25; // Compound assignment
 double adjusted_flour_tbsp = scaled_flour * 16.0; // Recalculate after adjustment

 int new_servings = desired_servings++; // Post-increment

 // Total dry ingredients using original scaled amounts (before adjustment)
 double total_dry_tbsp = flour_tbsp + scaled_sugar;

 // Output display
 std::cout << std::endl << "=== Scaling Results ===" << std::endl;
 std::cout << "Recipe: " << recipe_name << std::endl;
 std::cout << std::fixed << std::setprecision(2);
 std::cout << "Scaling factor: " << scaling_factor << std::endl << std::endl;

 std::cout << "Original Ingredients:" << std::endl;
 std::cout << "- Flour: " << flour_cups << " cups" << std::endl;
 std::cout << "- Sugar: " << sugar_tbsp << " tablespoons" << std::endl;
 std::cout << "- Milk: " << milk_oz << " fluid ounces" << std::endl << std::endl;

 std::cout << "Scaled Ingredients:" << std::endl;
 std::cout << "- Flour: " << flour_cups * scaling_factor << " cups (" << flour_tbsp << " tablespoons)" <<
std::endl;
 std::cout << "- Sugar: " << scaled_sugar << " tablespoons" << std::endl;
 std::cout << "- Milk: " << scaled_milk << " fluid ounces (" << milk_cups << " cups)" << std::endl << std::endl;

 std::cout << "After adjustments:" << std::endl;
 std::cout << "- Flour (adjusted): " << scaled_flour << " cups" << std::endl;
 std::cout << "- Total dry ingredients: " << total_dry_tbsp << " tablespoons" << std::endl;
 std::cout << "- Final serving count: " << desired_servings << std::endl;

 return 0;
}

	MTH 4300: Algorithms, Computers and Programming II
	Fall 2025
	Section: STRA
	Problem Set 1
	Question 1: Temperature and Distance Converter
	Question 2: Recipe Scaling Calculator

