
MTH 4300: Algorithms, Computers and Programming II

Fall 2025

Section: STRA

Midterm 1 Practice Exam (Oct 2, 2025)
Instructions: Show all your work. For code output questions, trace through the execution step by step. For implementation
questions, write complete, compilable C++ code.

Note: When submitting your solutions for this practice exam, please make sure to submit a PDF with handwritten responses.

Question 1
What is the output of the following C++ program? Show your work by tracing through the execution step by step.

#include <iostream>
#include <vector>
using namespace std;

void modifyArray(vector<int>& arr, int* multiplier) {
 for (int i = 0; i < arr.size(); i++) {
 if (arr[i] % 2 == 0) {
 arr[i] *= (*multiplier);
 } else {
 arr[i] += (*multiplier);
 }
 }
 (*multiplier)++;
}

int main() {
 vector<int> data = {3, 8, 5, 12, 7};
 int factor = 2;

 cout << "Initial: ";
 for (int val : data) {
 cout << val << " ";
 }
 cout << "factor=" << factor << endl;

 modifyArray(data, &factor);

 cout << "After first call: ";
 for (int val : data) {
 cout << val << " ";
 }
 cout << "factor=" << factor << endl;

 modifyArray(data, &factor);

 cout << "After second call: ";
 for (int val : data) {
 cout << val << " ";
 }
 cout << "factor=" << factor << endl;

 return 0;
}

Question 2
What is the output of the following C++ program? Show your work by tracing through each recursive call.

#include <iostream>
using namespace std;

int transform(int n, int depth) {
 cout << "Called transform(" << n << ", " << depth << ")" << endl;

 if (depth == 0 || n <= 1) {
 cout << "Base case reached, returning " << n << endl;
 return n;
 }

 if (n % 2 == 0) {
 int result = transform(n / 2, depth - 1) + transform(n / 2, depth - 1);
 cout << "Even case: returning " << result << endl;
 return result;
 } else {
 int result = transform(n - 1, depth - 1) + 1;
 cout << "Odd case: returning " << result << endl;
 return result;
 }
}

int main() {
 int finalResult = transform(6, 2);
 cout << "Final result: " << finalResult << endl;
 return 0;
}

Question 3
Write a function int findSecondLargest(const vector<int>& arr) that finds the second largest unique element in an array. If
there is no second largest element (array has fewer than 2 unique elements), return −1.

Examples:
• Input: {5, 2, 8, 2, 9, 1} → Output: 8 (largest is 9, second largest is 8)
• Input: {3, 3, 3} → Output: -1 (only one unique element)
• Input: {7, 7, 5} → Output: 5 (two unique elements: 7 and 5)

Requirements:
• Do not sort the array or use any sorting functions
• Handle duplicate values correctly
• Use only one pass through the array if possible
• Write a complete main() function that tests your function with at least 4 test cases including edge cases

Question 4
Write a function void reverseSegments(int* arr, int size, int segmentSize) that reverses every segment of the specified size
in an array using only pointer arithmetic.

Example:
• Original array: {1, 2, 3, 4, 5, 6, 7, 8, 9}
• After reverseSegments(arr, 9, 3): {3, 2, 1, 6, 5, 4, 9, 8, 7}
• Explanation: Segments [1,2,3], [4,5,6], [7,8,9] are each reversed

Requirements:
• Use only pointer arithmetic (no array indexing with [])
• Handle cases where the last segment is smaller than segmentSize
• If segmentSize ≤ 1 or ≥ size, do nothing to the array
• Write helper functions if needed
• Write a complete main() function that demonstrates your function with different test cases
• Display the array before and after the operation

Hint: You may want to write a helper function to reverse a single segment between two pointers.

Question 5
Write a recursive function bool canPartition(const vector<int>& arr, int index, int sum1, int sum2) that determines if an
array can be partitioned into two subsets with equal sums.

Examples:
• Input: {1, 5, 11, 5} → Output: true (can be partitioned as {1, 5, 5} and {11})
• Input: {1, 2, 3, 5} → Output: false (cannot be partitioned equally)

Requirements:
• The function must use recursion (no loops in the main logic)
• At each step, decide whether to include the current element in subset 1 or subset 2
• Base case: when index reaches the end of array, check if sum1 == sum2
• Write a wrapper function bool canPartition(const vector<int>& arr) that calls your recursive function
• Write a complete main() function that tests your function with at least 3 different test cases

Approach Hint:
• Start with index 0, sum1 = 0, sum2 = 0
• For each element, try adding it to subset 1 OR subset 2
• Use logical OR to combine the results of both possibilities

Question 6
Write a function vector<int> spiralTraversal(const vector<vector<int>>& matrix) that traverses a 2D matrix in spiral order
(clockwise from outside to inside) and returns the elements as a 1D vector.

Example:
• Input matrix:

1 2 3 4
5 6 7 8
9 10 11 12

• Output: {1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7}
• Traversal path: right → down → left → up → right → down

Requirements:
• Handle rectangular matrices (not just square)
• Handle edge cases: empty matrix, single row, single column
• Use boundary variables to track the current “ring” being traversed
• Write a complete main() function that demonstrates your function with different matrix sizes
• Display both the input matrix and the spiral traversal result

Approach Hint:
• Use four boundary variables: top, bottom, left, right
• Traverse: left to right on top row, top to bottom on right column, right to left on bottom row, bottom to top on left column
• After each direction, update the corresponding boundary

	MTH 4300: Algorithms, Computers and Programming II
	Fall 2025
	Section: STRA
	Midterm 1 Practice Exam (Oct 2, 2025)
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

