MTH 4300/4299

More on graphs: Union find, topological sort

Jaime Abbariao



What is Union Find?

« Data structure for tracking disjoint sets

« Efficiently performs two main operations:
» Find: Determine which set an element belongs to
» Union: Merge two sets together

«+ Also known as Disjoint Set Union (DSU)

2/21



Key Operations

1. Find(x): Returns representative of set containing x
2. Union(x, y): Merges sets containing x and y
3. Connected(x, y): Checks if x and y are in same set

3/21



Basic Implementation

class UnionFind {
private:
std::vector<int> parent;
std::vector<int> rank;
public:
UnionFind(int n) : parent(n), rank(n, 0) {
for (int 1 = 0; 1 < n; i++) {
parent[i] = i; // Each element is its own parent
initially
}
)
int find(int x) {
if (parent[x] != x) {
parent[x] find(parent[x]); // Path compression

}

return parent[x];

4/21



Union Implementation

void unite(int x, int y) {
int rootX find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] < rank[rootY]) {
parent[rootX] = rootY;
} else if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
} else {
parent[rootY] = rootX;
rank[rootX]++;

5/21



Connected implementation

bool connected(int x, int y) {
return find(x) == find(y);
}

6/21



Path Compression Visualization
Before Path Compression: After Path Compression:
Chain:0 >1—>2—>3—4 All point to root: 0 «— 1,2,3,4
Height: O(n) Height: O(1)

7/21



Union by Rank Example

Initial State: Union Operation:
+ Set A: {0} « Attach smaller rank
+ SetB: {1,2} to larger

Ranks: A=0, B=1 « A becomes child of B

Result: {0, 1,2}

Final Structure:

« Root: 1
o Children: 0, 2

Balanced tree

8/21



Applications Example: Network Connectivity

// Check if network components are connected
UnionFind network(6); // 6 computers

// Add connections

network.unite(0, 1); // Computer 0 1
network.unite(1, 2); // Computer 1 o 2
network.unite(3, 4); // Computer 3 o 4

// Check connectivity
bool connected 0 2 = network.connected(0, 2); // true
bool connected 0 3 network.connected(0, 3); // false

// Bridge networks
network.unite(2, 3); // Connect the two components
bool now connected = network.connected(0, 4); // true

9/21



Time Complexity

Why a(n) (Inverse Ackermann)?

Path compression + union by rank create nearly flat trees
Without optimizations: O(n) worst case (linear chain)
With optimizations: a(n) < 5 for all practical input sizes
Therefore: effectively O(1) constant time

Find: O(a(n)) ~ O(1) with path compression

Union: O(a(n)) ~ O(1) with union by rank

Space: O(n)

10/21



What is Topological Sort?

« Linear ordering of vertices in directed acyclic graph (DAG)
« For every directed edge u — v, u appears before v in ordering
« Used for: dependency resolution, task scheduling, course prerequisites

11/21



Prerequisites

« Graph must be a DAG (no cycles)
« If cycle exists, topological sort is impossible

12/21



Algorithm: Kahn’s Algorithm (BFS-based)

1. Calculate in-degree for each vertex
2. Start with vertices having in-degree 0
3. Process vertices one by one:
+ Remove vertex from graph
+ Decrease in-degree of all neighbors
+ Add neighbors with in-degree 0 to queue

13/21



Implementation: Setup Phase

std::vector<int> topologicalSort(int numVertices,
std::vector<std::vector<int>>&

edges) {
// Build adjacency list and calculate in-degrees
std::vector<std::vector<int>> adj (numVertices);
std::vector<int> inDegree(numVertices, 0);

for (auto& edge : edges) {
int from = edge[0], to = edge[l];
adj[from].push back(to);
inDegree[to]++;

}

// Find all vertices with in-degree 0

std::queue<int> queue;

for (int 1 = 0; 1 < numVertices; i++) {
if (inDegree[i] == 0) {

14/21



Implementation: Setup Phase (ii)

queue.push(i);

15/21



Implementation: Processing Phase

std::vector<int> result;

// Process vertices

while (!'queue.empty()) {
int vertex = queue.front();
queue.pop();
result.push back(vertex);

// Reduce in-degree of neighbors
for (int neighbor : adj[vertex]) {
inDegree[neighbor]--;
if (inDegree[neighbor] == 0) {
queue.push(neighbor);

}

16/21



Implementation: Processing Phase (ii)

// Check if all vertices were processed (no cycles)
if (result.size() != numVertices) {

return {}; // Cycle detected
}

return result;

17/21



Visual Example: Build Dependencies

Dependency Graph:
1
— —
0 3
2

Dependencies: 0—1, 0—2, 1—3, 2—3

Topological Order:0 -1 —2—>30r0—2—1—3

18/21



Kahn’s Algorithm Steps

Step 1: In-degrees
« Node 0: 0
« Node 1: 1
« Node 2: 1
« Node 3: 2

Queue: [0]

Step 2: Process 0
+ Remove 0
« Update: 1—0, 2—0

Queue: [1, 2] Result: [0]

Step 3: Process 1, 2
« Remove 1, 2
« Update: 3—0

Queue: [3] Result: [0, 1,

2]

19/21



Example: Software Build Dependencies

// Dependencies: 0->1, 0->2, 1->3, 2->3

// Meaning: task 0 must complete before 1 and 2

// tasks 1 and 2 must complete before 3

std::vector<std::vector<int>> dependencies = {
{0, 1}, {o, 2}, {1, 3}, {2, 3}

T

auto order = topologicalSort(4, dependencies);
// Possible result: [0, 1, 2, 3] or [0, 2, 1, 3]

20/21



Applications

+ Course scheduling: Prerequisites define dependencies
+ Build systems: Compile dependencies

+ Project management: Task dependencies

+ Package managers: Installation order

21/21



	What is Union Find?
	Key Operations
	Basic Implementation
	Union Implementation
	Connected implementation
	Path Compression Visualization
	Union by Rank Example
	Applications Example: Network Connectivity
	Time Complexity
	What is Topological Sort?
	Prerequisites
	Algorithm: Kahn's Algorithm (BFS-based)
	Implementation: Setup Phase
	Implementation: Processing Phase
	Visual Example: Build Dependencies
	Kahn's Algorithm Steps
	Example: Software Build Dependencies
	Applications

