
MTH 4300/4299
More on graphs: Union find, topological sort

Jaime Abbariao

What is Union Find?

• Data structure for tracking disjoint sets

• Efficiently performs two main operations:

‣ Find: Determine which set an element belongs to

‣ Union: Merge two sets together

• Also known as Disjoint Set Union (DSU)

2/21

Key Operations

1. Find(x): Returns representative of set containing x

2. Union(x, y): Merges sets containing x and y

3. Connected(x, y): Checks if x and y are in same set

3/21

Basic Implementation

class UnionFind {

private:

 std::vector<int> parent;

 std::vector<int> rank;

public:

 UnionFind(int n) : parent(n), rank(n, 0) {

 for (int i = 0; i < n; i++) {

 parent[i] = i; // Each element is its own parent

initially

 }

 }

 int find(int x) {

 if (parent[x] != x) {

 parent[x] = find(parent[x]); // Path compression

 }

 return parent[x];

 }

4/21

Union Implementation

 void unite(int x, int y) {

 int rootX = find(x);

 int rootY = find(y);

 if (rootX != rootY) {

 if (rank[rootX] < rank[rootY]) {

 parent[rootX] = rootY;

 } else if (rank[rootX] > rank[rootY]) {

 parent[rootY] = rootX;

 } else {

 parent[rootY] = rootX;

 rank[rootX]++;

 }

 }

 }

};

5/21

Connected implementation

 bool connected(int x, int y) {

 return find(x) == find(y);

 }

6/21

Path Compression Visualization

Before Path Compression:

Chain: 0 → 1 → 2 → 3 → 4

Height: 𝑂(𝑛)

After Path Compression:

All point to root: 0 ← 1,2,3,4

Height: 𝑂(1)

7/21

Union by Rank Example

Initial State:

• Set A: {0}

• Set B: {1, 2}

Ranks: A=0, B=1

Union Operation:

• Attach smaller rank

to larger

• A becomes child of B

Result: {0, 1, 2}

Final Structure:

• Root: 1

• Children: 0, 2

Balanced tree

8/21

Applications Example: Network Connectivity

// Check if network components are connected

UnionFind network(6); // 6 computers

// Add connections

network.unite(0, 1); // Computer 0 ↔ 1

network.unite(1, 2); // Computer 1 ↔ 2

network.unite(3, 4); // Computer 3 ↔ 4

// Check connectivity

bool connected_0_2 = network.connected(0, 2); // true

bool connected_0_3 = network.connected(0, 3); // false

// Bridge networks

network.unite(2, 3); // Connect the two components

bool now_connected = network.connected(0, 4); // true

9/21

Time Complexity

Why 𝛼(𝑛) (Inverse Ackermann)?

• Path compression + union by rank create nearly flat trees

• Without optimizations: 𝑂(𝑛) worst case (linear chain)

• With optimizations: 𝛼(𝑛) ≤ 5 for all practical input sizes

• Therefore: effectively 𝑂(1) constant time

• Find: 𝑂(𝛼(𝑛)) ≈ 𝑂(1) with path compression

• Union: 𝑂(𝛼(𝑛)) ≈ 𝑂(1) with union by rank

• Space: 𝑂(𝑛)

10/21

What is Topological Sort?

• Linear ordering of vertices in directed acyclic graph (DAG)

• For every directed edge u → v, u appears before v in ordering

• Used for: dependency resolution, task scheduling, course prerequisites

11/21

Prerequisites

• Graph must be a DAG (no cycles)

• If cycle exists, topological sort is impossible

12/21

Algorithm: Kahn’s Algorithm (BFS-based)

1. Calculate in-degree for each vertex

2. Start with vertices having in-degree 0

3. Process vertices one by one:

• Remove vertex from graph

• Decrease in-degree of all neighbors

• Add neighbors with in-degree 0 to queue

13/21

Implementation: Setup Phase

std::vector<int> topologicalSort(int numVertices,

 std::vector<std::vector<int>>&

edges) {

 // Build adjacency list and calculate in-degrees

 std::vector<std::vector<int>> adj(numVertices);

 std::vector<int> inDegree(numVertices, 0);

 for (auto& edge : edges) {

 int from = edge[0], to = edge[1];

 adj[from].push_back(to);

 inDegree[to]++;

 }

 // Find all vertices with in-degree 0

 std::queue<int> queue;

 for (int i = 0; i < numVertices; i++) {

 if (inDegree[i] == 0) {

14/21

Implementation: Setup Phase (ii)

 queue.push(i);

 }

 }

15/21

Implementation: Processing Phase

 std::vector<int> result;

 // Process vertices

 while (!queue.empty()) {

 int vertex = queue.front();

 queue.pop();

 result.push_back(vertex);

 // Reduce in-degree of neighbors

 for (int neighbor : adj[vertex]) {

 inDegree[neighbor]--;

 if (inDegree[neighbor] == 0) {

 queue.push(neighbor);

 }

 }

 }

16/21

Implementation: Processing Phase (ii)

 // Check if all vertices were processed (no cycles)

 if (result.size() != numVertices) {

 return {}; // Cycle detected

 }

 return result;

}

17/21

Visual Example: Build Dependencies

Dependency Graph:

1

0
→ →

3

2

Dependencies: 0→1, 0→2, 1→3, 2→3

Topological Order: 0 → 1 → 2 → 3 or 0 → 2 → 1 → 3

18/21

Kahn’s Algorithm Steps

Step 1: In-degrees

• Node 0: 0

• Node 1: 1

• Node 2: 1

• Node 3: 2

Queue: [0]

Step 2: Process 0

• Remove 0

• Update: 1→0, 2→0

Queue: [1, 2] Result: [0]

Step 3: Process 1, 2

• Remove 1, 2

• Update: 3→0

Queue: [3] Result: [0, 1,

2]

19/21

Example: Software Build Dependencies

// Dependencies: 0->1, 0->2, 1->3, 2->3

// Meaning: task 0 must complete before 1 and 2

// tasks 1 and 2 must complete before 3

std::vector<std::vector<int>> dependencies = {

 {0, 1}, {0, 2}, {1, 3}, {2, 3}

};

auto order = topologicalSort(4, dependencies);

// Possible result: [0, 1, 2, 3] or [0, 2, 1, 3]

20/21

Applications

• Course scheduling: Prerequisites define dependencies

• Build systems: Compile dependencies

• Project management: Task dependencies

• Package managers: Installation order

21/21

	What is Union Find?
	Key Operations
	Basic Implementation
	Union Implementation
	Connected implementation
	Path Compression Visualization
	Union by Rank Example
	Applications Example: Network Connectivity
	Time Complexity
	What is Topological Sort?
	Prerequisites
	Algorithm: Kahn's Algorithm (BFS-based)
	Implementation: Setup Phase
	Implementation: Processing Phase
	Visual Example: Build Dependencies
	Kahn's Algorithm Steps
	Example: Software Build Dependencies
	Applications

