MTH 4300/4299

Introduction to Graphs

Jaime Abbariao

What is a Graph?

| Undirected Graph

Figure 1: A graph is a collection of vertices (nodes) connected by edges

2/33

What is a Graph? (ii)

Key Components:

« Vertices (V): The nodes (A, B, C, D)

« Edges (E): The connections between nodes

« Graph G = (V, E): The complete structure
+ Degree of a vertex: the number of edges that are incident to a vertex

3/33

Types of Graphs
Undirected Graph:

LUndirected Graph

Figure 2: Edges have no directions

4/33

Types of Graphs (ii)

An undirected graph means that we’re allowed to travel on the edges between
nodes in any direction.

Referencing our image above, this means that we can go from node A to node
B and from node B to node A.

5/33

Types of Graphs (iii)
Directed Graph (Digraph):

| Directed Graph \

Figure 3: Edges have directions (arrows)

6/33

Types of Graphs (iv)

Unlike the undirected graph, the directed graph enforces that nodes can only
travel to other nodes in a specific direction.

In our example above, we can see that there is a directed edge from node A to
node B. This means that we can only go from A to B and not the other way
around.

7/33

More Graph Types
Weighted Graph:

| Weighted Graph

Figure 4: Edges have weights/costs

8/33

More Graph Types (ii)

Unweighted graphs treat all connections as equal, but when using graphs to
model real relationships, these connections all have some cost associated with
them.

Figure 5: Social networks model the strength of relationships between users

9/33

More Graph Types (iii)

Some other real world examples:

« GPS Navigation: prefers highways to local roads (speed here being one of
the potential weights/cost we can use)

+ Flight connections: minimizing travel time, ticket costs, etc and not just
the number of stops

10/33

More Graph Types (iv)
Cyclic vs Acyclic:

\TCycIic vs Acyclic Graphs J

Figure 6: Cyclic vs Acyclic Graphs

11/33

More Graph Types (v)

A cyclic graph:
« Contains at least one cycle (a path that starts and ends at the same vertex)
+ You can follow the edges and return to your starting point

An acyclic graph:
+ Contains no cycles

+ No path exists that leads back to the starting vertex
« Trees are the most common example of acyclic graphs

12/33

Graph Representations in C++
Two main approaches:

1. Adjacency Matrix
2. Adjacency List

Each has different trade-offs for memory and performance.

13/33

Adjacency Matrix

2D array where matrix[i][j] = 1 if edge exists from vertex i to vertex j.

raph: A-B, A-C, B-D, C-D

O H O Xau
P ®© Ok WY
oo =)
© R Kr OO0

]
]
]
]

std::vector<std::vector<int>> adj matrix(4, std::vector<int>(4,
0));

adj matrix[0][1] = 1; // A to B

adj matrix[1][0] 1; // B to A (undirected)

+ Pros: O(1) edge lookup, simple
« Cons: O(V?) space, even for sparse graphs

14/33

Adjacency Matrix (ii)

However, the above example only works if you have simple vertices. What
can we do if our vertices are a bit more complex?

There are two strategies we can consider here:

1. Mapping the more complex structure to a simple index
2. Use an adjacency list instead

15/33

Mapping strategy

For example, let’s suppose that the entries to our graph are object of the
following struct:

struct User {

std::string UUID; // a universally unique identifier
std::string name;

std::string address;

// Omitting the rest of the implementation

}’

If we wanted to use an adjacency matrix, we don’t have a simple way to
construct it! This means we need to create a method that allows us to easily
go from an object to an index.

16/33

Mapping strategy (ii)

class UserGraph {
std::vector<std::vector<int>> adj matrix;
std::unordered map<std::string, int> user uuid to_index;
int vertex count;
public:
UserGraph(): vertex count(0) {}
g

It’s important to note here that we’ll map some string to the simple index
using an unordered_map.

In the case of our User object, we’re going to store the UUID -> simple
index relationship.

17/33

Mapping strategy (iii)

// in the same class as above
int add vertex(User *a) {
if (user uuid to index.contains(a->UUID)) { return
user uuid to index[a->UUID]; }

user uuid to index[a->UUID] = vertex_ count;

for (auto &row : adj matrix) {
row.push back(0);
}

adj matrix.push back(std::vector<int>(vertex count + 1,
0));

return vertex_ count++;

}

18/33

Mapping strategy (iv)

// in the same class as above
void add edge(User *a, User *b) {
int a_index = add vertex(a);
int b_index = add vertex(b);

adj matrix[a_index][b_index]
adj matrix[b _index][a_ index]

}

I
[Re gy

Using the add_vertex method we just implemented, we can then grab the
appropriate simple index from the User object!

Once we have this, we can simply set the values in our adjacency matrix.

19/33

Mapping strategy (v)

// in the same class as above
bool has edge(User *a, User *b) {
if (
'user uuid to index.contains(a->UUID) ||
luser _uuid to_index.contains(b->UUID)
) {
return false;

}

auto a index
auto b _index

user uuid to index[a->UUID];
user_uuid to index[b->UUID];

return (
adj matrix[a index][b_index] !=
adj matrix[b_index][a_index] !=
)
}

0|
0

20/33

Adjacency List

Each vertex stores a list of its neighbors.

// For same graph: A-B, A-C, B-D, C-D
std::vector<std::vector<int>> adj list = {

{1, 2}, // A connected to B(1), C(2)
{0, 3}, // B connected to A(Q), D(3)
{0, 3}, // C connected to A(Q), D(3)
{1, 2} // D connected to B(1), C(2)

+;

If you wanted to support an adjacency list this way, you would have to create
again another mapping method for your graph to keep track of the
appropriate index for your vertex.

However, when typically working with adjacency lists, the more common
approach is to use a Map!

21/33

Adjacency List (ii)

By using a map, we’re able to pick out an identifier as our key and have a
vector of other identifiers as the value.

std::unordered map<std::string, std::vector<std::string>>
graph;

graph["A"] = {"B", "C"};

graph["B"] = {"A", "D"};

+ Pros: O(V + E) space, efficient for sparse graphs
+ Cons: O(degree) edge lookup

22/33

Graph Class Implementation

class Graph {
private:
std::unordered map<int, std::vector<int>> adj list;

public:
Graph(int v) : adj list(v) {}

void print_graph() {
for (const auto &[key, value] : adj list) {
std::cout << "Vertex " << key << ": ";
for (int neighbor : value) {

std::cout << neighbor << " ";

}

std::cout << std::endl;

23/33

Graph Class Implementation (ii)

// in the same class as above
void add edge(int u, int v) {
adj list[u].push back(v);
adj list[v].push back(u);

The implementation above isn’t the most thorough, but it gets the point
across. If we want to add an edge into the graph, then you should get the
vector by adj_list[u] and then just call push_back

24/33

Graph Traversal: Depth-First Search (DFS)

DFS

@
®e
O ©

Figure 7: Visit as far as possible along each branch before backtracking

25/33

Graph Traversal: Depth-First Search (DFS) (ii)

Go as deep as possible before backtracking

When you start thinking about DFS, think of it like exploring a maze - you
follow one path until you hit a dead end, then backtrack to try the next
unexplored path.

One thing to note here is that when you’re implementing this algorithm, you
want to make sure that you mark paths you’ve already explored!

This makes sure that we’re only exploring new paths.

26/33

DFS Implementation

// assume this code exists within the other Graph class
void dfs helper(int vertex, std::vector<bool>& visited) {
visited[vertex] = true;
std::cout << vertex << " ";
for (int neighbor : adj list[vertex]) {
if (!visited[neighbor]) {
dfs helper(neighbor, visited);
}
}
}
void dfs(int start) {
std::vector<bool> visited(vertices, false);
std::cout << "DFS traversal starting from " << start <<

dfs helper(start, visited);
std::cout << std::endl;

27/33

Graph Traversal: Breadth-First Search (BFS)

BFS

Figure 8: Visit all vertices at current level before moving to next level2s/33

BFS Implementation

// this is from the Graph class
void bfs(int start) {
std::vector<bool> visited(vertices, false);
std: :queue<int> queue;

visited[start] = true;
queue.push(start);

std::cout << "BFS traversal starting from " << start <<
while (!queue.empty()) {

int current = queue.front();

queue.pop();
std::cout << current << " ";

for (int neighbor : adj list[current]) {

29/33

BFS Implementation (ii)

if (!visited[neighbor]) {
visited[neighbor] = true;
queue.push(neighbor);

}
}

std::cout << std::endl;

30/33

Performance Comparison

Operation Adjacency Matrix | Adjacency List
Add Edge O(1) O(1)

Remove Edge O(1) O(degree)
Check Edge 0(1) O(degree)
Space o(v?) O(V+E)

Get All Neighbors | O(V) O(degree)

Choose based on your use case:
+ Dense graphs — Matrix

« Sparse graphs — List

» Many edge queries — Matrix

« Memory constrained — List

31/33

Lab

1. Given an undirected graph and two vertices, determine if a valid path
exists between them.

// Example: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0,
destination = 2
// Output: true
bool validPath(int n, std::vector<std::vector<int>> &edges, int
source, int destination) {

// Build adjacency list, use DFS/BFS from source
}

32/33

Lab (ii

2. A star graph has one center node connected to all other nodes. Find the
center.

// Example: edges = [[1,2],[2,3],[4,2]]

// Output: 2 (node 2 is connected to all others)

int findCenter(std::vector<std::vector<int>> &edges) {
// Use degree counting or simple edge analysis

}

33/33

	What is a Graph?
	Types of Graphs
	More Graph Types
	Graph Representations in C++
	Adjacency Matrix
	Mapping strategy
	Adjacency List
	Graph Class Implementation
	Graph Traversal: Depth-First Search (DFS)
	DFS Implementation
	Graph Traversal: Breadth-First Search (BFS)
	BFS Implementation
	Performance Comparison
	Lab

