
MTH 4300/4299
Introduction to Graphs

Jaime Abbariao

What is a Graph?

Figure 1: A graph is a collection of vertices (nodes) connected by edges

2/33

What is a Graph? (ii)

Key Components:

• Vertices (V): The nodes (A, B, C, D)

• Edges (E): The connections between nodes

• Graph G = (V, E): The complete structure

• Degree of a vertex: the number of edges that are incident to a vertex

3/33

Types of Graphs

Undirected Graph:

Figure 2: Edges have no directions

4/33

Types of Graphs (ii)

An undirected graph means that we’re allowed to travel on the edges between

nodes in any direction.

Referencing our image above, this means that we can go from node A to node

B and from node B to node A.

5/33

Types of Graphs (iii)

Directed Graph (Digraph):

Figure 3: Edges have directions (arrows)

6/33

Types of Graphs (iv)

Unlike the undirected graph, the directed graph enforces that nodes can only

travel to other nodes in a specific direction.

In our example above, we can see that there is a directed edge from node A to

node B. This means that we can only go from A to B and not the other way

around.

7/33

More Graph Types

Weighted Graph:

Figure 4: Edges have weights/costs

8/33

More Graph Types (ii)

Unweighted graphs treat all connections as equal, but when using graphs to

model real relationships, these connections all have some cost associated with

them.

Figure 5: Social networks model the strength of relationships between users

9/33

More Graph Types (iii)

Some other real world examples:

• GPS Navigation: prefers highways to local roads (speed here being one of

the potential weights/cost we can use)

• Flight connections: minimizing travel time, ticket costs, etc and not just

the number of stops

10/33

More Graph Types (iv)

Cyclic vs Acyclic:

Figure 6: Cyclic vs Acyclic Graphs

11/33

More Graph Types (v)

A cyclic graph:

• Contains at least one cycle (a path that starts and ends at the same vertex)

• You can follow the edges and return to your starting point

An acyclic graph:

• Contains no cycles

• No path exists that leads back to the starting vertex

• Trees are the most common example of acyclic graphs

12/33

Graph Representations in C++

Two main approaches:

1. Adjacency Matrix

2. Adjacency List

Each has different trade-offs for memory and performance.

13/33

Adjacency Matrix

2D array where matrix[i][j] = 1 if edge exists from vertex i to vertex j.

// For graph: A-B, A-C, B-D, C-D

// A B C D

// A [0 1 1 0]

// B [1 0 0 1]

// C [1 0 0 1]

// D [0 1 1 0]

std::vector<std::vector<int>> adj_matrix(4, std::vector<int>(4,

0));

adj_matrix[0][1] = 1; // A to B

adj_matrix[1][0] = 1; // B to A (undirected)

• Pros: 𝑂(1) edge lookup, simple

• Cons: 𝑂(𝑉 2) space, even for sparse graphs

14/33

Adjacency Matrix (ii)

However, the above example only works if you have simple vertices. What

can we do if our vertices are a bit more complex?

There are two strategies we can consider here:

1. Mapping the more complex structure to a simple index

2. Use an adjacency list instead

15/33

Mapping strategy

For example, let’s suppose that the entries to our graph are object of the

following struct:

struct User {

 std::string UUID; // a universally unique identifier

 std::string name;

 std::string address;

 // Omitting the rest of the implementation

};

If we wanted to use an adjacency matrix, we don’t have a simple way to

construct it! This means we need to create a method that allows us to easily

go from an object to an index.

16/33

Mapping strategy (ii)

class UserGraph {

 std::vector<std::vector<int>> adj_matrix;

 std::unordered_map<std::string, int> user_uuid_to_index;

 int vertex_count;

public:

 UserGraph(): vertex_count(0) {}

};

It’s important to note here that we’ll map some string to the simple index

using an unordered_map.

In the case of our User object, we’re going to store the UUID -> simple

index relationship.

17/33

Mapping strategy (iii)

// in the same class as above

 int add_vertex(User *a) {

 if (user_uuid_to_index.contains(a->UUID)) { return

user_uuid_to_index[a->UUID]; }

 user_uuid_to_index[a->UUID] = vertex_count;

 for (auto &row : adj_matrix) {

 row.push_back(0);

 }

 adj_matrix.push_back(std::vector<int>(vertex_count + 1,

0));

 return vertex_count++;

 }

18/33

Mapping strategy (iv)

// in the same class as above

 void add_edge(User *a, User *b) {

 int a_index = add_vertex(a);

 int b_index = add_vertex(b);

 adj_matrix[a_index][b_index] = 1;

 adj_matrix[b_index][a_index] = 1;

 }

Using the add_vertex method we just implemented, we can then grab the

appropriate simple index from the User object!

Once we have this, we can simply set the values in our adjacency matrix.

19/33

Mapping strategy (v)

// in the same class as above

 bool has_edge(User *a, User *b) {

 if (

 !user_uuid_to_index.contains(a->UUID) ||

 !user_uuid_to_index.contains(b->UUID)

) {

 return false;

 }

 auto a_index = user_uuid_to_index[a->UUID];

 auto b_index = user_uuid_to_index[b->UUID];

 return (

 adj_matrix[a_index][b_index] != 0 ||

 adj_matrix[b_index][a_index] != 0

)

 }

20/33

Adjacency List

Each vertex stores a list of its neighbors.

// For same graph: A-B, A-C, B-D, C-D

std::vector<std::vector<int>> adj_list = {

 {1, 2}, // A connected to B(1), C(2)

 {0, 3}, // B connected to A(0), D(3)

 {0, 3}, // C connected to A(0), D(3)

 {1, 2} // D connected to B(1), C(2)

};

If you wanted to support an adjacency list this way, you would have to create

again another mapping method for your graph to keep track of the

appropriate index for your vertex.

However, when typically working with adjacency lists, the more common

approach is to use a Map!

21/33

Adjacency List (ii)

By using a map, we’re able to pick out an identifier as our key and have a

vector of other identifiers as the value.

std::unordered_map<std::string, std::vector<std::string>>

graph;

graph["A"] = {"B", "C"};

graph["B"] = {"A", "D"};

• Pros: 𝑂(𝑉 + 𝐸) space, efficient for sparse graphs

• Cons: 𝑂(degree) edge lookup

22/33

Graph Class Implementation

class Graph {

private:

 std::unordered_map<int, std::vector<int>> adj_list;

public:

 Graph(int v) : adj_list(v) {}

 void print_graph() {

 for (const auto &[key, value] : adj_list) {

 std::cout << "Vertex " << key << ": ";

 for (int neighbor : value) {

 std::cout << neighbor << " ";

 }

 std::cout << std::endl;

 }

 }

};

23/33

Graph Class Implementation (ii)

// in the same class as above

 void add_edge(int u, int v) {

 adj_list[u].push_back(v);

 adj_list[v].push_back(u);

 }

The implementation above isn’t the most thorough, but it gets the point

across. If we want to add an edge into the graph, then you should get the

vector by adj_list[u] and then just call push_back

24/33

Graph Traversal: Depth-First Search (DFS)

Figure 7: Visit as far as possible along each branch before backtracking

25/33

Graph Traversal: Depth-First Search (DFS) (ii)

Go as deep as possible before backtracking

When you start thinking about DFS, think of it like exploring a maze - you

follow one path until you hit a dead end, then backtrack to try the next

unexplored path.

One thing to note here is that when you’re implementing this algorithm, you

want to make sure that you mark paths you’ve already explored!

This makes sure that we’re only exploring new paths.

26/33

DFS Implementation

// assume this code exists within the other Graph class

 void dfs_helper(int vertex, std::vector<bool>& visited) {

 visited[vertex] = true;

 std::cout << vertex << " ";

 for (int neighbor : adj_list[vertex]) {

 if (!visited[neighbor]) {

 dfs_helper(neighbor, visited);

 }

 }

 }

 void dfs(int start) {

 std::vector<bool> visited(vertices, false);

 std::cout << "DFS traversal starting from " << start <<

": ";

 dfs_helper(start, visited);

 std::cout << std::endl;

 }

27/33

Graph Traversal: Breadth-First Search (BFS)

Figure 8: Visit all vertices at current level before moving to next level.28/33

BFS Implementation

// this is from the Graph class

 void bfs(int start) {

 std::vector<bool> visited(vertices, false);

 std::queue<int> queue;

 visited[start] = true;

 queue.push(start);

 std::cout << "BFS traversal starting from " << start <<

": ";

 while (!queue.empty()) {

 int current = queue.front();

 queue.pop();

 std::cout << current << " ";

 for (int neighbor : adj_list[current]) {

29/33

BFS Implementation (ii)

 if (!visited[neighbor]) {

 visited[neighbor] = true;

 queue.push(neighbor);

 }

 }

 }

 std::cout << std::endl;

 }

30/33

Performance Comparison

Operation Adjacency Matrix Adjacency List

Add Edge 𝑂(1) 𝑂(1)

Remove Edge 𝑂(1) 𝑂(degree)

Check Edge 𝑂(1) 𝑂(degree)

Space 𝑂(𝑉 2) 𝑂(𝑉 + 𝐸)

Get All Neighbors 𝑂(𝑉) 𝑂(degree)

Choose based on your use case:

• Dense graphs → Matrix

• Sparse graphs → List

• Many edge queries → Matrix

• Memory constrained → List

31/33

Lab

1. Given an undirected graph and two vertices, determine if a valid path

exists between them.

// Example: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0,

destination = 2

// Output: true

bool validPath(int n, std::vector<std::vector<int>> &edges, int

source, int destination) {

 // Build adjacency list, use DFS/BFS from source

}

32/33

Lab (ii)

2. A star graph has one center node connected to all other nodes. Find the

center.

// Example: edges = [[1,2],[2,3],[4,2]]

// Output: 2 (node 2 is connected to all others)

int findCenter(std::vector<std::vector<int>> &edges) {

 // Use degree counting or simple edge analysis

}

33/33

	What is a Graph?
	Types of Graphs
	More Graph Types
	Graph Representations in C++
	Adjacency Matrix
	Mapping strategy
	Adjacency List
	Graph Class Implementation
	Graph Traversal: Depth-First Search (DFS)
	DFS Implementation
	Graph Traversal: Breadth-First Search (BFS)
	BFS Implementation
	Performance Comparison
	Lab

