
MTH 4300: Algorithms, Computers and Programming II

Fall 2025

Section: STRA

Lecture 1

Installing Visual Studio Code
For this class, I recommend using Visual Studio Code or Cursor in order to standardize our development environments.

• Visual Studio Code
• Cursor

By making sure that everyone is using the same development environment, we can ensure that we’re all on the same page and it
helps me debug any issues that may arise.

Of course, you’re free to use whatever IDE you’re comfortable with, but just know that I may not be able to fully support any
issues you may have with your editor.

Installing a C++ compiler
For Windows, you should follow the instructions in the following link to install MinGW:

https://code.visualstudio.com/docs/languages/cpp#_example-install-mingwx64-on-windows

Once you’ve completed this, you should be able to run the following command in the terminal:

gcc --version
g++ --version
gdb --version

For MacOS, you should already have a C++ compiler installed if at any point you’ve installed Xcode.

To verify this, run the following command in the terminal:

clang --version

For other systems, you should follow the instructions in the following link to install a C++ compiler:

https://code.visualstudio.com/docs/languages/cpp

Installing CMake
In general, An Introduction to CMake is a good resource for learning more about CMake.

There is a section in the link above that explains how to install CMake on your system.

For those on MacOS, you should install CMake via Homebrew.

For those on Windows, you can download the installer from the following link: https://cmake.org/download/

Lab: Hello, World!
To conclude today’s lecture, we’ll be writing a simple program that prints Hello, World! to the terminal.

For this, create a new directory called hello-world in a directory of your choice.

Now within this directory, let’s create the following:
• a file called main.cpp which will hold our code.
• a file called CMakeLists.txt which will hold our CMake configuration.
• a directory called build which will hold our build output.

Implementing Hello, World!

Within our main.cpp file, we’ll need to implement the following:

#include <iostream>

int main() {
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

In C++, we can use the std::cout object to print to the terminal.

std::endl is a special object that tells the terminal to print a new line.

https://code.visualstudio.com/Download
https://www.cursor.com/
https://code.visualstudio.com/docs/languages/cpp#_example-install-mingwx64-on-windows
https://code.visualstudio.com/docs/languages/cpp
https://cliutils.gitlab.io/modern-cmake/README.html
https://cmake.org/download/

Running the program without CMake

In your terminal, run the following command to build an executable for main.cpp:

g++ -o hello-world main.cpp

What this is doing is taking advantage of the g++ compiler to compile the main.cpp file and create an executable called hello-
world. Note that -o is used to specify the name of the executable.

If successful, you should see that we’ll have a our executable in the current directory. If you run the following command, you
should see that we’ll have a our executable in the current directory.

./hello-world

We should then see Hello, World! printed to the terminal.

Note that it’s okay to compile and run the program without CMake for small standalone programs like this, but in general,
when a project gets larger and more dependencies are added, we need a build system to help us manage the compilation process.

This is where CMake comes in.

Filling out the CMakeLists.txt file

CMakeLists.txt is a file that tells CMake how to build our project.

cmake_minimum_required(VERSION 3.20)
project(hello-world)

add_executable(hello-world main.cpp)

At a high-level, this file tells CMake to:
• use the minimum version of CMake that we support (3.20)
• name our project hello-world
• add a target called hello-world which will build our executable from the main.cpp file.

Configuring the CMake project

Before we can actually build our project, we first need to configure our project using CMake.

To do this, we’ll need to run the following commands in the terminal:

cd build
cmake ..

Building the project

Once this is setup, we can then build our project within Visual Studio Code.

If you open up the command palette which should be accessible via the following commands:
• Ctrl+Shift+P on Windows
• Cmd+Shift+P on Mac

You should be able to search for CMake: Build and select it.

If successful, you should see that we’ll have a our executable in the build directory.

In this case, you’re looking for the hello-world executable.

Running the program

Now that we have our executable, we can run it by running the following command in the terminal:

./build/hello-world

However, we also have the option of running the program within Visual Studio Code.

You should then see a new terminal open up in the bottom of the screen with our desired output!

	MTH 4300: Algorithms, Computers and Programming II
	Fall 2025
	Section: STRA
	Lecture 1
	Installing Visual Studio Code
	Installing a C++ compiler
	Installing CMake
	Lab: Hello, World!
	Implementing Hello, World!
	Running the program without CMake
	Filling out the CMakeLists.txt file
	Configuring the CMake project
	Building the project
	Running the program

