MTH 4300: Programming and Computer Science 11
Fall 2025
Section: STRA

Midterm 2 (November 18th, 2025)

Grading Section (For Instructor Use)

Question Points Score
Question 1 30 / 30
Question 2 10 / 10
Question 3 10 / 10
Total 50 / 50

Comments:

Question 1

You are implementing a Polynomial class to perform mathematical operations on polynomials like P(z) = 3z + 2z + 1.

Part 1 (20 points)
Design and implement a Polynomial class with the following specifications:

Private members:
o double* coefficients - dynamically allocated array storing coefficients
e int degree - highest power of x (degree of polynomial)

Public interface:

e Polynomial(int deg) - constructor creating polynomial of given degree, all coefficients initialized to 0.0

o Complete Rule of Five: copy constructor, copy assignment operator, move constructor, move assignment operator,
destructor

e void set coefficient(int power, double coeff) - sets coefficient for xPoVe"

e double get coefficient(int power) const - returns coefficient for P

e int get degree() const - returns degree of polynomial

Storage format: Store coefficients where index represents power:
e coefficients[0] = constant term

o coefficients[1] = coefficient of x!

o coefficients[2] = coefficient of z2

Requirements:
« Copy operations create independent deep copies
o Move operations efficiently transfer ownership

Write the complete class definition and all member function implementations.

class Polynomial {
private:
double *coefficients;
int degree;

public:
Polynomial(int degree) : degree(degree) {
coefficients = new double[degree + 1]

}

~Polynomial() {
delete[] coefficients;
coefficients = nullptr;

}

Polynomial(const Polynomial &other) {
degree = other.degree;
coefficients = new double[degree + 1]
for (int 1 = 0; i < degree + 1; i++) {
coefficients[i] = other.coefficients[i];
}
}

Polynomial &operator=(const Polynomial &other) {
if (this == &other) {
return *this;

}
delete[] coefficients;

degree = other.degree;

coefficients = new double[degree + 1]

for (int i = 0; 1 < degree + 1; i++) {
coefficients[i] = other.coefficients[i];

}

return *this;

}

Polynomial(Polynomial &&other) noexcept
: degree(other.degree), coefficients(other.coefficients) {
other.coefficients = nullptr;
other.degree = 0;

}

Polynomial &operator=(Polynomial &Sother) noexcept {

if (this == &other) {
return *this;

}

delete[] coefficients;
degree = other.degree;
coefficients = other.coefficients;

other.coefficients = nullptr;
other.degree = 0;

return *this;

}
int get degree() const { return degree; }
double get coefficient(int power) const { return coefficients[power]; }
void set coefficient(int power, double coeff) {
if (power < 0 || power > degree) {

throw std::runtime error("invalid power provided");

}

coefficients[power] = coeff;

}

double evaluate(double x) const;
Polynomial derivate() const;

Part 2 (10 points)
Implement the following methods for your class as well.

o double evaluate(double x) const - evaluates polynomial at given x value

e Polynomial derivative() const - returns derivative as new Polynomial object
Requirements:

« evaluate(x) computes: ¢y + ;T + cox? + ... + ¢, 7"

« derivative() applies the following rule: - (c,z") =n - c,z"!

Solution

double Polynomial::evaluate(double x) const {
double result = 0;

double curr = 1;

for (int 1 = 0; i < degree + 1; i++) {
result += coefficients[i] * curr;
curr *= x;

}

return result;

}

Polynomial Polynomial::derivate() const {
if (degree == 0) {
Polynomial dx(degree);
return dx;

}

Polynomial dx(degree - 1);
for (int 1 = 1; i < degree + 1; i++) {
dx.coefficients[i - 1] = coefficients[i] * i;

}

return dx;

Question 2

Given the following Node structure for a singly linked list:

struct Node {

int data;

Node* next;

Node(int val) : data(val), next(nullptr) {}
+

Write a function insert_sorted that inserts a new value into a sorted linked list while maintaining the sorted order.
Function signature:

Node* insert sorted(Node* head, int value);

Examples:

- Input: List = [1, 3, 5, 7], value = 4
- Output: [1, 3, 4, 5, 7]

- Input: List = [2, 4, 6], value =1
- Output: [1, 2, 4, 6]

I}
wv

- Input: List = [1, 2, 3], value
- Output: [1, 2, 3, 5]

Solution

Node *insert sorted(Node *head, int value) {
Node *new node = new Node(value);

if (head == nullptr) {
return new_node;

}

if (head->data >= value) {
new_node->next = head;
return new_node;

}

Node *current = head;
Node *prev = nullptr;

while (current != nullptr && current->data < value) {
prev = current;
current = current->next;

if (prev != nullptr) {
prev->next = new node;
new_node->next = current;
}

return head;

Question 3

You are given a string containing lowercase letters and asterisks (*). Each asterisk represents a “backspace” operation that
removes the closest non-asterisk character to its left.

Write a function remove_stars that processes the string and returns the final result after all asterisk operations.
Function signature:

std::string remove stars(const std::string& s);

- Input: "abc*de*f"
- Output: "abdf"

Input: "a*b*c*"
OQutput: ""

Input: "hello*world"
- Output: "hellworld"

Solution

#include <stack>
#include <string>

std::string remove stars(const std::string &s) {
std::stack<char> stack;
std::string res;

for (const auto &ch : s) {
if (ch == '*') { stack.pop(); }
else { stack.push(ch); }

}

while (!'stack.empty()) {
res = stack.top() + res;
stack.pop();

}

return res;

	MTH 4300: Programming and Computer Science II
	Fall 2025
	Section: STRA
	Midterm 2 (November 18th, 2025)
	Question 1
	Part 1 (20 points)
	Part 2 (10 points)

	Solution
	Question 2
	Solution
	Question 3
	Solution

