
MTH 4300: Programming and Computer Science II

Fall 2025

Section: STRA

Midterm 2 (November 18th, 2025)

Grading Section (For Instructor Use)

Question Points Score

Question 1 30 / 30

Question 2 10 / 10

Question 3 10 / 10

Total 50 / 50

Comments:

Question 1

You are implementing a Polynomial class to perform mathematical operations on polynomials like 𝑃(𝑥) = 3𝑥2 + 2𝑥 + 1.

Part 1 (20 points)

Design and implement a Polynomial class with the following specifications:

Private members:

• double* coefficients - dynamically allocated array storing coefficients

• int degree - highest power of x (degree of polynomial)

Public interface:

• Polynomial(int deg) - constructor creating polynomial of given degree, all coefficients initialized to 0.0

• Complete Rule of Five: copy constructor, copy assignment operator, move constructor, move assignment operator,

destructor

• void set_coefficient(int power, double coeff) - sets coefficient for 𝑥power

• double get_coefficient(int power) const - returns coefficient for 𝑥power

• int get_degree() const - returns degree of polynomial

Storage format: Store coefficients where index represents power:

• coefficients[0] = constant term

• coefficients[1] = coefficient of 𝑥1

• coefficients[2] = coefficient of 𝑥2

Requirements:

• Copy operations create independent deep copies

• Move operations efficiently transfer ownership

Write the complete class definition and all member function implementations.

class Polynomial {

private:

 double *coefficients;

 int degree;

public:

 Polynomial(int degree) : degree(degree) {

 coefficients = new double[degree + 1];

 }

 ~Polynomial() {

 delete[] coefficients;

 coefficients = nullptr;

 }

 Polynomial(const Polynomial &other) {

 degree = other.degree;

 coefficients = new double[degree + 1];

 for (int i = 0; i < degree + 1; i++) {

 coefficients[i] = other.coefficients[i];

 }

 }

 Polynomial &operator=(const Polynomial &other) {

 if (this == &other) {

 return *this;

 }

 delete[] coefficients;

 degree = other.degree;

 coefficients = new double[degree + 1];

 for (int i = 0; i < degree + 1; i++) {

 coefficients[i] = other.coefficients[i];

 }

 return *this;

 }

 Polynomial(Polynomial &&other) noexcept

 : degree(other.degree), coefficients(other.coefficients) {

 other.coefficients = nullptr;

 other.degree = 0;

 }

 Polynomial &operator=(Polynomial &&other) noexcept {

 if (this == &other) {

 return *this;

 }

 delete[] coefficients;

 degree = other.degree;

 coefficients = other.coefficients;

 other.coefficients = nullptr;

 other.degree = 0;

 return *this;

 }

 int get_degree() const { return degree; }

 double get_coefficient(int power) const { return coefficients[power]; }

 void set_coefficient(int power, double coeff) {

 if (power < 0 || power > degree) {

 throw std::runtime_error("invalid power provided");

 }

 coefficients[power] = coeff;

 }

 double evaluate(double x) const;

 Polynomial derivate() const;

};

Part 2 (10 points)

Implement the following methods for your class as well.

• double evaluate(double x) const - evaluates polynomial at given x value

• Polynomial derivative() const - returns derivative as new Polynomial object

Requirements:

• evaluate(x) computes: 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 +…+ 𝑐𝑛𝑥

𝑛

• derivative() applies the following rule: 𝑑
𝑑𝑥(𝑐𝑛𝑥

𝑛) = 𝑛 ⋅ 𝑐𝑛𝑥
𝑛−1

Solution

double Polynomial::evaluate(double x) const {

 double result = 0;

 double curr = 1;

 for (int i = 0; i < degree + 1; i++) {

 result += coefficients[i] * curr;

 curr *= x;

 }

 return result;

}

Polynomial Polynomial::derivate() const {

 if (degree == 0) {

 Polynomial dx(degree);

 return dx;

 }

 Polynomial dx(degree - 1);

 for (int i = 1; i < degree + 1; i++) {

 dx.coefficients[i - 1] = coefficients[i] * i;

 }

 return dx;

}

Question 2

Given the following Node structure for a singly linked list:

struct Node {

 int data;

 Node* next;

 Node(int val) : data(val), next(nullptr) {}

};

Write a function insert_sorted that inserts a new value into a sorted linked list while maintaining the sorted order.

Function signature:

Node* insert_sorted(Node* head, int value);

Examples:

- Input: List = [1, 3, 5, 7], value = 4

- Output: [1, 3, 4, 5, 7]

- Input: List = [2, 4, 6], value = 1

- Output: [1, 2, 4, 6]

- Input: List = [1, 2, 3], value = 5

- Output: [1, 2, 3, 5]

Solution

Node *insert_sorted(Node *head, int value) {

 Node *new_node = new Node(value);

 if (head == nullptr) {

 return new_node;

 }

 if (head->data >= value) {

 new_node->next = head;

 return new_node;

 }

 Node *current = head;

 Node *prev = nullptr;

 while (current != nullptr && current->data < value) {

 prev = current;

 current = current->next;

 }

 if (prev != nullptr) {

 prev->next = new_node;

 new_node->next = current;

 }

 return head;

}

Question 3

You are given a string containing lowercase letters and asterisks (*). Each asterisk represents a “backspace” operation that

removes the closest non-asterisk character to its left.

Write a function remove_stars that processes the string and returns the final result after all asterisk operations.

Function signature:

std::string remove_stars(const std::string& s);

- Input: "abc*de*f"

- Output: "abdf"

- Input: "a*b*c*"

- Output: ""

- Input: "hello*world"

- Output: "hellworld"

Solution

#include <stack>

#include <string>

std::string remove_stars(const std::string &s) {

 std::stack<char> stack;

 std::string res;

 for (const auto &ch : s) {

 if (ch == '*') { stack.pop(); }

 else { stack.push(ch); }

 }

 while (!stack.empty()) {

 res = stack.top() + res;

 stack.pop();

 }

 return res;

}

	MTH 4300: Programming and Computer Science II
	Fall 2025
	Section: STRA
	Midterm 2 (November 18th, 2025)
	Question 1
	Part 1 (20 points)
	Part 2 (10 points)

	Solution
	Question 2
	Solution
	Question 3
	Solution

