
MTH 3300 STRA Final Exam
May 22, 2025

Name

Points Total Points

Problem 1  10

Problem 2  10

Problem 3  15

Problem 4  15

Problem 5  10

Problem 6  10

Problem 7  10

Problem 8  20

Total  100



Problem 1
Given two strings ransom_note and magazine, return True if ransom_note can be constructed using the letters from
magazine and False otherwise.

Example:

can_construct_ransom_note("aa", "aba") outputs True
can_construct_ransom_note("aa", "ab") outputs False

NOTE: Don’t assume that the examples above are the only test cases your function will be tested
on.

def can_construct_ransom_note(ransom_note: str, magazine: str) -> bool:
    # Write your answer below



Problem 2
Remember that a factorial is defined as 𝑛! = 𝑛 × 𝑛 − 1 × … × 1.

Write a function that finds the sum of the digits of a factorial. For example, 4! = 4 × 3 × 2 × 1 = 24, so
sum_factorial_digits(4) would produce 6 since 4! = 24 and 2 + 4 would give us 6.

def sum_factorial_digits(n: int) -> int:
    # Write your answer below



Problem 3
Write a function generate_pascal(n: int) that generates the first n rows of Pascal’s Triangle. Each number in the
triangle is the sum of the two numbers directly above it.

Example of Pascal’s Triangle:

Row 0:     1
Row 1:    1 1
Row 2:   1 2 1
Row 3:  1 3 3 1
Row 4: 1 4 6 4 1

Your function should return a list of lists, where each inner list represents a row.

For example, generate_pascal(3) should return:

[
    [1],
    [1, 1],
    [1, 2, 1]
]

Note: This triangle has many interesting mathematical properties:
• Each row starts and ends with 1
• Each number is the sum of the two numbers above it
• Row n contains the coefficients of the expansion of (𝑥 + 𝑦)𝑛

def generate_pascal(n: int) -> list[list[int]]:
    # Write your solution here



Problem 4
Each question in this section is worth 3 points.

i) Consider the following code:

class A:
    def __init__(self):
        self._x = 1
        self.__y = 2
    
    def get_y(self):
        return self.__y

class B(A):
    def __init__(self):
        super().__init__()
        self._x = 3
        self.__y = 4

b = B()
print(b._x, b.get_y())

What is the output?

a) 3 2
b) 3 4
c) 1 2
d) 1 4

ii) Consider this code:

class A:
    def __init__(self):
        self.value = 0
        
    def __add__(self, other):
        return self.value + other
        
    def __sub__(self, other):
        return other - self.value

a = A()
print(a + 5)
print(10 - a)

What is the output?

a) 5 10
b) 5 TypeError
c) TypeError 10
d) TypeError TypeError



iii) Consider this code:

class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    
    def __add__(self, other):
        return Vector(self.x + other.x, self.y + other.y)

    def __str__(self):
        return f"({self.x}, {self.y})"

v1 = Vector(1, 2)
v2 = Vector(3, 4)
v3 = v1 + v2
print(v3)

What is the output?

a) (4, 6)
b) (1, 2)
c) (3, 4)
d) (1, 3)

iv) Given:

class A:
    @classmethod
    def method(cls, x):
        return x

class B(A):
    @staticmethod
    def method(x):
        return x + 1

b = B()
print(b.method(1))
print(B.method(1))

What is the output?

a) 2 2
b) 1 2
c) 2 1
d) 1 1



v) Given the following code:

class Base:
    multiplier = 2
    
    def __init__(self, value):
        self.value = value
    
    @classmethod
    def update_multiplier(cls, new_value):
        cls.multiplier = new_value
        
    def calculate(self):
        return self.value * self.multiplier

class Derived(Base):
    multiplier = 3
    
    def calculate(self):
        return super().calculate() + 5

base_obj = Base(10)
derived_obj = Derived(10)

Base.update_multiplier(4)
print(f"Result 1: {base_obj.calculate()}")
print(f"Result 2: {derived_obj.calculate()}")

Derived.update_multiplier(6)
print(f"Result 3: {base_obj.calculate()}")
print(f"Result 4: {derived_obj.calculate()}")

What is the output?

a) Result 1: 40 Result 2: 45 Result 3: 40 Result 4: 65
b) Result 1: 40 Result 2: 35 Result 3: 40 Result 4: 65
c) Result 1: 40 Result 2: 45 Result 3: 24 Result 4: 65
d) Result 1: 20 Result 2: 35 Result 3: 40 Result 4: 65



Problem 5
The greatest common divisor of two or more integers which are not all zero is the largest positive integer that
divides each of the integers. For example, the GCD of 8 and 12 is 4.

(a) (5 points) Write a recursive function gcd(x, y) that computes the GCD of two integers 𝑥 and 𝑦 using the
Euclidean algorithm. The function should return the GCD of the two numbers. Note that we can use the following
piecewise function to represent the GCD.

𝑓(𝑥, 𝑦) ≔ {𝑥 if 𝑦 = 0
𝑓(𝑦, 𝑥 mod 𝑦) otherwise

(b) (5 points) Implement the same method above, but iteratively, i.e. use a loop



Problem 6
Suppose that you have the following data in a CSV file:

name,age,species,health_status
Max,3,Dog,Healthy
Luna,2,Cat,Needs Medication
Charlie,5,Dog,Recovering
Bella,1,Cat,Healthy
Rocky,4,Dog,Needs Medication
Milo,2,Cat,Healthy
Shadow,6,Dog,Recovering
Lucy,3,Cat,Healthy
Cooper,2,Dog,Healthy
Lily,4,Cat,Needs Medication

Given the following class definition:

class Animal:
    name: str
    age: int
    species: str
    health_status: str
    
    def __init__(self, name: str, age: int, species: str, health_status: str):
        self.name = name
        self.age = age
        self.species = species
        self.health_status = health_status

Add a classmethod to the above class called from_csv(cls, filepath: str) -> list[Animal] that reads the CSV
data from filepath and creates an Animal instance for each row



Problem 7
Given a list of int numbers nums, determine if the sequence of numbers is a geometric progression. By definition, a
geometric progression is a sequence of numbers that have the form:

𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, 𝑎𝑟4…

where 𝑎 is the initial value and 𝑟 is the common ratio.

For example, 2, 6, 18, 54,… is a geometric progression with a common ratio of 3.

def is_geometric_progression(nums: list[int]) -> bool:
    # write your work here



Problem 8
You are tasked with implementing a basic inventory system for an RPG game. The system should handle items,
stacks of items, and inventory management.

Part 1: Item Class (3 points)

Create a class Item with:
• Attributes: name (str), weight (int), value (int), rarity (str)



Part 2: Stack Class (7 points)

Create a class Stack that represents multiple items of the same type:
• Attributes:

‣ item (Item instance)
‣ quantity (int, cannot be negative)

• Properties:
‣ total_weight
‣ total_value

• Methods:
‣ add(self, n: int): increases quantity by n
‣ remove(self, n: int): decreases quantity by n (minimum quantity is 0)



Part 3: Inventory Class (10 points)

Create a class Inventory that manages collections of Stacks:
• Attributes:

‣ maximum_weight (int)
‣ items (list of Stack instances, internal use only)

• Property:
‣ total_value: returns sum of all stack values

• Methods:
‣ add_item(self, item: Item, quantity: int = 1):

– If item exists, increase its stack quantity
– If item is new, create new stack

‣ get_items_by_rarity(self, rarity: str) -> list[Stack]:
– Returns list of all stacks with matching rarity

‣ transfer_to(other: 'Inventory', item_name: str, quantity: int):
– Moves specified quantity of named item to other inventory

Example usage:

>>> sword = Item("Steel Sword", weight=5, value=100, rarity="Common")
>>> inv = Inventory(maximum_weight=50)
>>> inv.add_item(sword, 2)
>>> print(inv.total_value)  # Should print: 200
>>> rare_items = inv.get_items_by_rarity("Rare")  # Should return empty list


	MTH 3300 STRA Final Exam
	May 22, 2025
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Part 1: Item Class (3 points)
	Part 2: Stack Class (7 points)
	Part 3: Inventory Class (10 points)



