
MTH 3300 STRA Final Exam Key
May 22, 2025

Name

Points Total Points

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 15

Problem 5 10

Problem 6 10

Problem 7 10

Problem 8 20

Total 100

Problem 1
Given two strings ransom_note and magazine, return True if ransom_note can be constructed using the letters from
magazine and False otherwise.

Example:

can_construct_ransom_note("aa", "aba") outputs True
can_construct_ransom_note("aa", "ab") outputs False

def can_construct_ransom_note(ransom_note: str, magazine: str) -> bool:
 freqs = {}

 for char in magazine:
 freqs[char] = freqs.get(char, 0) + 1

 for char in ransom_note:
 if char not in freqs or freqs[char] == 0:
 return False
 freqs[char] -= 1

 return True

Problem 2
Remember that a factorial is defined as 𝑛! = 𝑛 × 𝑛 − 1 × … × 1.

Write a function that finds the sum of the digits of a factorial. For example, 4! = 4 × 3 × 2 × 1 = 24, so
sum_factorial_digits(4) would produce 6 since 4! = 24 and 2 + 4 would give us 6.

def sum_factorial_digits(n: int) -> int:
 factorial = 1
 for i in range(1, n + 1):
 factorial *= i

 _sum = 0
 while factorial > 0:
 _sum += factorial % 10
 factorial //= 10

 return _sum

Problem 3
Write a function generate_pascal(n: int) that generates the first n rows of Pascal’s Triangle. Each number in the
triangle is the sum of the two numbers directly above it.

Example of Pascal’s Triangle:

Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1

Your function should return a list of lists, where each inner list represents a row. For example, generate_pascal(3)
should return:

[
 [1],
 [1, 1],
 [1, 2, 1]
]

Note: This triangle has many interesting mathematical properties:
• Each row starts and ends with 1
• Each number is the sum of the two numbers above it
• Row n contains the coefficients of the expansion of (𝑥 + 𝑦)𝑛

def generate_pascal(n: int) -> list[list[int]]:
 if n <= 0:
 return []

 triangle = [[1]]
 for i in range(1, n):
 row = [1]
 for j in range(1, i):
 row.append(triangle[i-1][j-1] + triangle[i-1][j])
 row.append(1)
 triangle.append(row)

 return triangle

Problem 4
Each question in this section is worth 3 points.

i) Consider the following code:

class A:
 def __init__(self):
 self._x = 1
 self.__y = 2

 def get_y(self):
 return self.__y

class B(A):
 def __init__(self):
 super().__init__()
 self._x = 3
 self.__y = 4

b = B()
print(b._x, b.get_y())

What is the output?

The output is 3 2. The reason is that _x is not mangled, so it takes the value from the subclass. __y is mangled, so
it takes the value from the subclass. Note that name mangling is a mechanism Python uses to make attributes
that start with double underscores more “private” by automatically modifying their names.

So b.__y is actually b._B__y, which is 4, but b.get_y() is actually b._A__get_y(), which is 2.

ii) Consider this code:

class Vector:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 return Vector(self.x + other.x, self.y + other.y)

 def __str__(self):
 return f"({self.x}, {self.y})"

v1 = Vector(1, 2)
v2 = Vector(3, 4)
v3 = v1 + v2
print(v3)

What is the output?

The output is (4, 6).

We create two vectors v1 and v2 with coordinates (1, 2) and (3, 4).

We then add them together to get a new vector v3 with coordinates (4, 6).

We then print v3, which is (4, 6).

iii) Given:

class A:
 @classmethod
 def method(cls, x):
 return x

class B(A):
 @staticmethod
 def method(x):
 return x + 1

b = B()
print(b.method(1))
print(B.method(1))

What is the output?

The output is 2 2.

The reason is that method is a static method in class B, so it takes the class as the first argument.

When we call b.method(1), it actually calls B.method(B, 1).

When we call B.method(1), it actually calls B.method(B, 1).

iv) Consider this code:

class A:
 def __init__(self):
 self.value = 0

 def __add__(self, other):
 return self.value + other

 def __sub__(self, other):
 return other - self.value

a = A()
print(a + 5)
print(10 - a)

What is the output?

The output is 5 TypeError

The reason is that __add__ is a magic method that is called when we use the + operator.

When we call a + 5, it actually calls a.__add__(5).

But when we do 10 - a, we are not able to subtract an instance of A from an integer. This will raise a TypeError

v) Given the following code:

class Base:
 multiplier = 2

 def __init__(self, value):
 self.value = value

 @classmethod
 def update_multiplier(cls, new_value):
 cls.multiplier = new_value

 def calculate(self):
 return self.value * self.multiplier

class Derived(Base):
 multiplier = 3

 def calculate(self):
 return super().calculate() + 5

base_obj = Base(10)
derived_obj = Derived(10)

Base.update_multiplier(4)
print(f"Result 1: {base_obj.calculate()}")
print(f"Result 2: {derived_obj.calculate()}")

Derived.update_multiplier(6)
print(f"Result 3: {base_obj.calculate()}")
print(f"Result 4: {derived_obj.calculate()}")

What is the output? The output should be:

Result 1: 40
Result 2: 35
Result 3: 40
Result 4: 65

For base_obj, we initially set the value to be 10. The multiplier is initially 2 for the Base class.

For derived_obj, we initially set the value to be 10. The multiplier is initially 3 for the Derived class.

Before we print Result 1, we call Base.update_multiplier(4). This changes the multiplier for the Base class to be
4.

This means that Result 1 is 10 * 4 = 40.

For Result 2, we call derived_obj.calculate(). This calls Derived.calculate(derived_obj).

The Derived class has a calculate method that calls the calculate method of the Base class and adds 5 to the
result.

So Result 2 is (10 * 3) + 5 = 35.

Before we print Result 3, we call Derived.update_multiplier(6). This changes the multiplier for the Derived class
to be 6.

However, this does not affect the Base class.

So Result 3 is 10 * 4 = 40.

For Result 4, we call derived_obj.calculate(). This calls Derived.calculate(derived_obj).

The Derived class has a calculate method that calls the calculate method of the Base class and adds 5 to the
result.

So Result 4 is (10 * 6) + 5 = 65.

Problem 5
The greatest common divisor of two or more integers which are not all zero is the largest positive integer that
divides each of the integers. For example, the GCD of 8 and 12 is 4.

(a) (5 points) Write a recursive function gcd(x, y) that computes the GCD of two integers 𝑥 and 𝑦 using the
Euclidean algorithm. The function should return the GCD of the two numbers. Note that we can use the following
piecewise function to represent the GCD.

𝑓(𝑥, 𝑦) ≔ {𝑥 if 𝑦 = 0
𝑓(𝑦, 𝑥 mod 𝑦) otherwise

def gcd(x, y):
 if y == 0:
 return x
 return gcd(y, x % y)

(b) (5 points) Implement the same method above, but iteratively, i.e. use a loop

def gcd(x, y):
 while y != 0:
 x, y = y, x % y
 return x

Problem 6
Suppose that you have the following data in a CSV file:

name,age,species,health_status
Max,3,Dog,Healthy
Luna,2,Cat,Needs Medication
Charlie,5,Dog,Recovering
Bella,1,Cat,Healthy
Rocky,4,Dog,Needs Medication
Milo,2,Cat,Healthy
Shadow,6,Dog,Recovering
Lucy,3,Cat,Healthy
Cooper,2,Dog,Healthy
Lily,4,Cat,Needs Medication

Given the following class definition:

class Animal:
 name: str
 age: int
 species: str
 health_status: str

 def __init__(self, name: str, age: int, species: str, health_status: str):
 self.name = name
 self.age = age
 self.species = species
 self.health_status = health_status

Add a classmethod to the above class called from_csv(cls, filepath: str) -> list[Animal] that reads the CSV
data from filepath and creates an Animal instance for each row

import csv

class Animal:
 name: str
 age: int
 species: str
 health_status: str

 @classmethod
 def from_csv(cls, filepath: str) -> list[Animal]:
 with open(filepath, 'r') as file:
 reader = csv.reader(file)
 next(reader) # Skip header row
 animals = []
 for row in reader:
 animals.append(cls(row[0], int(row[1]), row[2], row[3]))
 return animals

Problem 7
Given a list of float numbers nums, determine if the sequence of numbers is a geometric progression. By definition,
a geometric progression is a sequence of numbers that have the form:

𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, 𝑎𝑟4…

where 𝑎 is the initial value and 𝑟 is the common ratio.

For example, 2, 6, 18, 54,… is a geometric progression with a common ratio of 3.

def is_geometric_progression(nums: list[int]) -> bool:
 ratio, rem = None, None

 for i in range(len(nums) - 1):
 if ratio is None:
 ratio = nums[i+1] // nums[i]
 rem = nums[i+1] % nums[i]
 elif nums[i+1] // nums[i] != ratio or nums[i+1] % nums[i] != rem:
 return False
 return True

Problem 8
You are tasked with implementing a basic inventory system for an RPG game. The system should handle items,
stacks of items, and inventory management.

Part 1: Item Class (5 points)

Create a class Item with:
• Attributes: name (str), weight (int), value (int), rarity (str)

class Item:
 name: str
 weight: int
 value: int
 rarity: str

 def __init__(self, name: str, weight: int, value: int, rarity: str):
 self.name = name
 self.weight = weight
 self.value = value
 self.rarity = rarity

Part 2: Stack Class (7 points)

Create a class Stack that represents multiple items of the same type:
• Attributes:

‣ item (Item instance)
‣ quantity (int, cannot be negative)

• Properties:
‣ total_weight
‣ total_value

• Methods:
‣ add(self, n: int): increases quantity by n
‣ remove(self, n: int): decreases quantity by n (minimum quantity is 0)

class Stack:
 item: Item
 quantity: int

 def __init__(self, item: Item, quantity: int):
 self.item = item
 self.quantity = quantity

 @property
 def total_weight(self):
 return self.item.weight * self.quantity

 @property
 def total_value(self):
 return self.item.value * self.quantity

 def add(self, n: int):
 self.quantity += n

 def remove(self, n: int):
 self.quantity = max(0, self.quantity - n)

Part 3: Inventory Class (8 points)

Create a class Inventory that manages collections of Stacks:
• Attributes:

‣ maximum_weight (int)
‣ _items (list of Stacks, internal use only)

• Property:
‣ total_value: returns sum of all stack values

• Methods:
‣ add_item(self, item: Item, quantity: int = 1):

– If item exists, increase its stack quantity
– If item is new, create new stack

‣ get_items_by_rarity(self, rarity: str) -> list[Stack]:
– Returns list of all stacks with matching rarity

‣ transfer_to(other: 'Inventory', item_name: str, quantity: int):
– Moves specified quantity of named item to other inventory

Example usage:

>>> sword = Item("Steel Sword", weight=5, value=100, rarity="Common")
>>> inv = Inventory(maximum_weight=50)
>>> inv.add_item(sword, 2)
>>> print(inv.total_value) # Should print: 200
>>> rare_items = inv.get_items_by_rarity("Rare") # Should return empty list

class Inventory:
 maximum_weight: int
 _items: list[Stack]

 def __init__(self, maximum_weight: int):
 self.maximum_weight = maximum_weight
 self._items = []

 @property
 def total_value(self):
 return sum(stack.total_value for stack in self._items)

 def add_item(self, item: Item, quantity: int = 1):
 for stack in self._items:
 if stack.item.name == item.name:
 stack.add(quantity)
 return
 self._items.append(Stack(item, quantity))

 def get_items_by_rarity(self, rarity: str) -> list[Stack]:
 return [stack for stack in self._items if stack.item.rarity == rarity]

 def transfer_to(self, other: 'Inventory', item_name: str, quantity: int):
 for stack in self._items:
 if stack.item.name == item_name:
 if stack.quantity > quantity:
 stack.remove(quantity)
 other.add_item(stack.item, quantity)
 return
 else:
 other.add_item(stack.item, stack.quantity)
 self._items.remove(stack)

	MTH 3300 STRA Final Exam Key
	May 22, 2025
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Part 1: Item Class (5 points)
	Part 2: Stack Class (7 points)
	Part 3: Inventory Class (8 points)

